Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Heliyon ; 9(9): e19583, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809817

RESUMO

The present study aimed to investigate the application of the ohmic heating (OH) technique in the production of date syrup from the date fruit of the Sukkary variety at different electric field strengths (EFS) (9, 10, and 11 V/cm). The results were compared to the conventional heating method (CH). The response surface methodology was used to optimize yield. The results showed that the time to reach the boiling point of dates and water mixture using OH was less than the CH by 80% for extracting and 900% for evaporation. In addition, the productivity of date syrup using OH at EFS of 11 V/cm was higher than the CH by 86.11%. There is no significant effect between OH at EFS of 11 V/cm and CH in moisture content, refractive index, density, TSS, and viscosity. The optimum level of EFS was 11.5 V/cm, which gave a higher yield (64.93%). OH, save consumed power and cost. The OH gave the highest scores of sensory characteristics compared to CH. Total sugars, monosaccharides, and ketone monosaccharides were detected in the date syrup, and the result was positive, while the quintuple sugars and multiple sugars were negative for all treatments. The OH reduced the cost by 85.78% compared with CH.

2.
Ultrason Sonochem ; 97: 106461, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269690

RESUMO

The purpose of this study was to examine plasma-activated buffer solution (PABS) and plasma-activated water (PAW) combined with ultrasonication (U) treatment on the reduction of chlorothalonil fungicide and the quality of tomato fruits during storage. To obtain PAW and PABS, an atmospheric air plasma jet was used to treat buffer solution and deionized water at different treatment times (5 and 10 min). For combined treatments, fruits were submerged in PAW and PABS, then sonicated for 15 min, and individual treatment without sonication. As per the results, the maximum chlorothalonil reduction of 89.29% was detected in PAW-U10, followed by 85.43% in PABS. At the end of the storage period, the maximum reduction of 97.25% was recorded in PAW-U10, followed by 93.14% in PABS-U10. PAW, PABS, and both combined with ultrasound did not significantly affect the overall tomato fruit quality in the storage period. Our results revealed that PAW combined with sonication had a significant impact on post-harvest agrochemical degradation and retention of tomato quality than PABS. Conclusively, the integrated hurdle technologies effectively reduce agrochemical residues, which helps to lower health hazards and foodborne illnesses.


Assuntos
Fungicidas Industriais , Solanum lycopersicum , Água/química , Nitrilas
3.
Foods ; 12(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37372628

RESUMO

The valorization of industrial fruit and vegetable waste has gained significant attention due to the environmental concerns and economic opportunities associated with its effective utilization. This review article comprehensively discusses the application of subcritical and supercritical fluid technologies in the valorization process, highlighting the potential benefits of these advanced extraction techniques for the recovery of bioactive compounds and unconventional oils from waste materials. Novel pressurized fluid extraction techniques offer significant advantages over conventional methods, enabling effective and sustainable processes that contribute to greener production in the global manufacturing sector. Recovered bio-extract compounds can be used to uplift the nutritional profile of other food products and determine their application in the food, pharmaceutical, and nutraceutical industries. Valorization processes also play an important role in coping with the increasing demand for bioactive compounds and natural substitutes. Moreover, the integration of spent material in biorefinery and biorefining processes is also explored in terms of energy generation, such as biofuels or electricity, thus showcasing the potential for a circular economy approach in the management of waste streams. An economic evaluation is presented, detailing the cost analysis and potential barriers in the implementation of these valorization strategies. The article emphasizes the importance of fostering collaboration between academia, industry, and policymakers to enable the widespread adoption of these promising technologies. This, in turn, will contribute to a more sustainable and circular economy, maximizing the potential of fruit and vegetable waste as a source of valuable products.

4.
Ultrason Sonochem ; 97: 106464, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37271028

RESUMO

High-intensity ultrasound (HIU) is considered one of the promising non-chemical eco-friendly techniques used in food processing. Recently (HIU) is known to enhance food quality, extraction of bioactive compounds and formulation of emulsions. Various foods are treated with ultrasound, including fats, bioactive compounds, and proteins. Regarding proteins, HIU induces acoustic cavitation and bubble formation, causing the unfolding and exposure of hydrophobic regions, resulting in functional, bioactive, and structural enhancement. This review briefly portrays the impact of HIU on the bioavailability and bioactive properties of proteins; the effect of HIU on protein allergenicity and anti-nutritional factors has also been discussed. HIU can enhance bioavailability and bioactive attributes in plants and animal-based proteins, such as antioxidant activity, antimicrobial activity, and peptide release. Moreover, numerous studies revealed that HIU treatment could enhance functional properties, increase the release of short-chain peptides, and decrease allergenicity. HIU could replace the chemical and heat treatments used to enhance protein bioactivity and digestibility; however, its applications are still on research and small scale, and its usage in industries is yet to be implemented.


Assuntos
Gorduras , Sonicação , Animais , Sonicação/métodos , Fenômenos Químicos , Gorduras/química , Manipulação de Alimentos/métodos , Interações Hidrofóbicas e Hidrofílicas
5.
Food Sci Nutr ; 11(3): 1309-1317, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911814

RESUMO

Natural herbs are now receiving more attention due to the growing demand for their antioxidant properties. This study compared flaxseed and fennel seeds for their nutritional composition, bioactive moieties, and antioxidant activity-the study comprised two different phases. According to methods, phase I analyzed flaxseed and fennel seeds for proximate composition, mineral profile, dietary fiber, and amino acid content. In phase II, seeds were extracted using three different solvents, i.e., ethanol 80%, acetone 80%, and distilled water, to probe the total phenolic and flavonoid content. Antioxidant activity was measured using DPPH and a FRAP in the final phase. Current study revealed that flaxseed had higher protein (17.33 ± 0.02%), fat content (36.76 ± 0.02%), potassium (763.66 ± 4.04 mg/100 g), iron (5.13 ± 0.03 mg/100 g), phosphorus (581.46 ± 4.07 mg/100 g), magnesium (406.60 ± 5.12 mg/100 g), and zinc (3.30 ± 0.49 mg/100 g), respectively. In fennel seed, high dietary fiber (53.2 ± 0.01 g/100 mg), calcium, manganese, and sodium (588.93 ± 7.77, 20.30 ± 0.95, and 57.34 ± 0.33 mg/100 g, respectively) were found. Acetone showed better extraction efficiency than acetone, ethanol, and distilled water. Moreover, acetone flaxseed extract showed higher total phenolic content (84.13 ± 7.73 mgGAE/g), flavonoid content (5.11 ± 1.50 mgQE/g), and FRAP (5031 ± 15.92 µMFe2+/g) than fennel seed extract. This study showed that, among both herbs, flaxseed extract may have pharmacological potential in preventing illnesses and may be suggested for use in the food industry as a natural antioxidant.

6.
Crit Rev Food Sci Nutr ; : 1-31, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861223

RESUMO

The worldwide challenges related to food sustainability are presently more critical than ever before due to the severe consequences of climate change, outbreak of epidemics, and wars. Many consumers are shifting their dietary habits toward consuming more plant-based foods, such as plant milk analogs (PMA) for health, sustainability, and well-being reasons. The PMA market is anticipated to reach US$38 billion within 2024, making them the largest segment in plant-based foods. Nevertheless, using plant matrices to produce PMA has numerous limitations, including, among others, low stability and short shelf life. This review addresses the main obstacles facing quality and safety of PMA formula. Moreover, this literature overview discusses the emerging approaches, e.g., pulsed electric field (PEF), cold atmospheric plasma (CAP), ultrasound (US), ultra-high-pressure homogenization (UHPH), ultraviolet C (UVC) irradiation, ozone (O3), and hurdle technology used in PMA formulations to overcome their common challenges. These emerging technologies have a vast potential at the lab scale to improve physicochemical characteristics, increase stability and extend the shelf-life, decrease food additives, increase nutritional and organoleptic qualities of the end product. Although the PMA fabrication on a large scale using these technologies can be expected in the near future to formulate novel food products that can offer green alternatives to conventional dairy products, further development is still needed for wider commercial applications.

7.
Ultrason Sonochem ; 94: 106303, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36731282

RESUMO

Among different novel technologies, sonochemistry is a sustainable emerging technology for food processing, preservation, and pesticide removal. The study aimed to probe the impact of high-intensity ultrasonication on chlorothalonil fungicide degradation, reduction pathway, and bioactive availability of spinach juice. The chlorothalonil fungicide-immersed spinach juice was treated with sonication at 360 W, 480 W, and 600 W, 40 kHz, for 30 and 40 min at 30 ± 1 °C. The highest reduction of chlorothalonil fungicide residues was observed at 40 min sonication at 600 W. HPLC-MS (high-performance liquid chromatography-mass spectroscopy) analysis revealed the degradation pathway of chlorothalonil and the formation of m-phthalonitrile, 3-cyno-2,4,5,6-tetrachlorobenamide, 4-dichloroisophthalonitrile, trichloroisophtalonitrile, 4-hydoxychlorothalonil, and 2,3,4,6-tetrachlorochlorobenzonitrile as degradation products. High-intensity sonication treatments also significantly increased the bioavailability of phenolic, chlorophyll, and anthocyanins and the antioxidant activity of spinach juice. Our results proposed that sonication technology has excellent potential in degrading pesticides through free radical reactions formation and pyrolysis. Considering future perspectives, ultrasonication could be employed industrially to reduce pesticide residues from agricultural products and enhance the quality of spinach juice.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/química , Spinacia oleracea , Antocianinas , Antioxidantes
8.
Molecules ; 28(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770908

RESUMO

Food allergies are a serious food safety and public health issue. Soybean, dairy, aquatic, poultry, and nut products are common allergens inducing allergic reactions and adverse symptoms such as atopic dermatitis, allergic eczema, allergic asthma, and allergic rhinitis. Probiotics are assumed as an essential ingredient in maintaining intestinal microorganisms' composition. They have unique physiological roles and therapeutic effects in maintaining the mucosal barrier, immune function, and gastrointestinal tract, inhibiting the invasion of pathogenic bacteria, and preventing diarrhea and food allergies. Multiple pieces of evidence reveal a significant disruptive effect of probiotics on food allergy pathology and progression mechanisms. Thus, this review describes the allergenic proteins as an entry point and briefly describes the application of probiotics in allergenic foods. Then, the role of probiotics in preventing and curing allergic diseases by regulating human immunity through intestinal flora and intestinal barrier, modulating host immune active cells, and improving host amino acid metabolism are described in detail. The anti-allergic role of probiotics in the function and metabolism of the gastrointestinal tract has been comprehensively explored to furnish insights for relieving food allergy symptoms and preventing food allergy.


Assuntos
Dermatite Atópica , Hipersensibilidade Alimentar , Probióticos , Humanos , Hipersensibilidade Alimentar/tratamento farmacológico , Dermatite Atópica/tratamento farmacológico , Alérgenos/uso terapêutico , Probióticos/farmacologia , Probióticos/uso terapêutico , Imunidade , Imunomodulação
9.
Foods ; 12(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36832786

RESUMO

Meat contains several amino acids related to taste, which have a significant impact on the overall acceptability of consumers. A number of volatile compounds have been studied in relation to meat flavor, but amino acids have not been fully explored in relation to the taste of raw or cooked meat. It would be interesting to find any changes in physicochemical characteristics, especially the level of taste-active compounds and flavor content during non-thermal processing such as pulsed electric fields (PEF), for commercial reasons. The effect of PEF at low intensity (LPEF; 1 kV/cm) and comparatively high intensity (HPEF; 3 kV/cm) with different pulse numbers (25, 50, and 100) was investigated on the physicochemical characteristics of chicken breast, including the free amino acid content (related to umami, sweet, bitter, or fresh pleasant taste). PEF is regarded as a "nonthermal" technology; however, HPEF induces moderate temperature rises as it increases with the treatment intensity (i.e., electric field strength and pulse number). The pH, shear force, and cook loss (%) of the LPEF and untreated samples were not affected by the treatments, but the shear force of the LPEF and untreated samples was lower than that of HPEF groups that showed PEF-induced slight structural modifications resulting in a more porous cell. In the case of color parameters, the lightness of meat (L*) was significantly higher with treatment intensity, whereas both a* and b* were unaffected by the PEF treatments. Moreover, PEF treatment significantly (p < 0.05) affected umami-related free amino acids (FAAs; glutamic acid and aspartic acid) and leucine and valine, which are precursors of flavor compounds. However, PEF decreases the level of bitter taste contributing FAAs such as lysine and tyrosine, which may prevent the formation of fermented flavors. In conclusion, both PEF treatments (LPEF and HPEF) did not adversely impact the physicochemical quality of chicken breast.

10.
Food Sci Nutr ; 11(1): 137-147, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36655088

RESUMO

Flaxseed polysaccharide gum (FPG) was extracted through the ultrasound-assisted process using water as a solvent with a yield ranging from 8.05 ± 0.32% to 12.23 ± 0.45% by changing different extraction variables. The extracted FPG was analyzed for its functional groups and antioxidant potential. The maximum DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity (≈100%) of FPG was noted at concentrations beyond ≈10 mg·ml-1. The maximum inhibition percentage through ABTS (2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid) (72.4% ± 1.9%) was noted at 40 mg·ml-1, which was observed to be less when compared to DPPH at the same concentration. The total antioxidant potential of the FPG solution at a concentration of 10 mg·ml-1 was equivalent to 461 mg ascorbic acid, which tends to increase with concentration at a much lower scope. The in vivo trial suggested that the least weight gain was noted in experimental groups G2 and Gh2. A significant reduction in total cholesterol was noticed in G1 (-14.14%) and G2 (-17.72%) and in Gh1 (-22.02%) and Gh2 (-34.68%) after 60 days of the trial compared to the baseline values. The maximum reduction in total triglyceride was observed in Gh2 (-25.06%) and Gh1 (-22.01%) after 60 days of the trial. It was an increasing trend in high-density lipoprotein cholesterol (HDL-c) in different experimental groups G2 (10.51%) than G1 (5.35%) and Gh2 (48.96%) and Gh1 (31.11%), respectively, after 60 days of study interval. Reduction of -5.05% and - 9.45% was observed in G1 and G2, while similar results were observed in Gh1 and Gh2. Conclusively, results suggested a possible protective role of FPG against hyperlipidemia.

11.
J Texture Stud ; 54(1): 105-114, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36136727

RESUMO

In this study, the dough sheet wrap-around was employed to assist the resting process of the semi-dried noodles comparatively with dough crumbs resting and common dough sheet resting. The gluten network quantitative analysis was carried out to investigate the positive impacts of dough sheet wrap-around resting in semi-dried noodles production. The results showed that the dough sheet wrap-around resting improved the color, surface smoothness, cooking qualities, and eating qualities of semi-dried noodles. Dough sheet wrap-around resting for 30 min significantly (p < 0.05) increased the surface smoothness and chewiness by 47.08% and 44.35%, respectively. Furthermore, increased extensibility in the transverse direction of dough sheets generated superior processing properties. The average protein length and width of dough sheets experienced a considerable (p < 0.05) reduction. In contrast, the branching rate was markedly (p < 0.05) augmented, which meant the distribution of gluten network was more uniform and denser. The total protein length and the number of protein network lines both significantly (p < 0.05) increased. The number of transverse protein network lines increased by 28.70%, which was much higher than that (5.77%) of the longitudinal direction. Conclusively, at the optimal dough sheet wrap-around time of 30 min, the higher-quality semi-dried noodles were produced by enhancing the gluten network.


Assuntos
Farinha , Glutens , Farinha/análise , Culinária , Qualidade dos Alimentos
12.
Ultrason Sonochem ; 92: 106257, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36508892

RESUMO

Sonication and dielectric barrier discharge (DBD) plasma are sustainable emerging food processing technologies. The study investigates the impact of sonication, DBD-plasma, and thermal treatment (TT) on wheat sprout juice. The obtained results indicated a significant (p < 0.05) increase in chlorophyll, total phenolics, flavonoids, DPPH assay, and ORAC assay after DBD-plasma (40 V) and sonication (30 mins) treatment as compared to TT and untreated samples. Both emerging technologies significantly (p < 0.05) reduce the polyphenol oxidase and peroxidase activities, but the TT sample had the highest reduction. Moreover, the synergistic application of both technologies significantly reduced the E. coli/Coliform, aerobics, yeast and mold up to the 2 log reduction, but the TT sample had a complete reduction. DBD-plasma and sonication processing significantly decreased (p < 0.05) the particle size, reducing apparent viscosity (η) and consistency index (K); while increasing the flow behavior (n), leading to higher stability of wheat sprout juice. To assess the impact of emerging techniques on nutrient concentration, we used surface-enhance Raman spectroscopy (SERS) as an emerging method. Silver-coated gold nano-substrates were used to compare the nutritional concentration of wheat sprout juice treated with sonication, DBD-plasma, and TT-treated samples. Results showed sharp peaks for samples treated with DBD-plasma followed by sonication, untreated, and TT. The obtained results, improved quality of wheat sprout juice, and lower microbial and enzymatic loads were confirmed, showing the suitability of these sustainable processing techniques for food processing and further research.


Assuntos
Escherichia coli , Triticum , Triticum/química , Sonicação , Manipulação de Alimentos/métodos , Antioxidantes
13.
Front Nutr ; 9: 1009807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583211

RESUMO

Crocin is a bioactive compound that naturally occurs in some medicinal plants, especially saffron and gardenia fruit. Different conventional and novel methods are used for its extraction. Due to some control conditions, recent methods such as ultrasonic extraction, supercritical fluid extraction, enzyme-associated extraction, microwave extraction, and pulsed electric field extraction are widely used because these methods give more yield and efficiency. Crocin is incorporated into different food products to make functional foods. However, it can also aid in the stability of food products. Due to its ability to protect against brain diseases, the demand for crocin has been rising in the pharmaceutical industry. It also contain antioxidant, anti-inflammatory, anticancer and antidepressant qualities. This review aims to describe crocin and its role in developing functional food, extraction, and bioavailability in various brain-related diseases. The results of the literature strongly support the importance of crocin against various diseases and its use in making different functional foods.

14.
Front Nutr ; 9: 994309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324618

RESUMO

Metabolic syndrome (MS) is a prominent cause of death worldwide, posing a threat to the global economy and public health. A mechanism that causes the oxidation of low-density lipoproteins (LDL) is associated with metabolic abnormalities. Various processes are involved in oxidative stress (OS) of lipoprotein. Although the concept of the syndrome has been fiercely debated, this confluence of risk factors is associated with a higher chance of acquiring type 2 diabetes mellitus (T2DM) and atherosclerosis. Insulin resistance has been found to play a significant role in the progression of these metabolism-associated conditions. It causes lipid profile abnormalities, including greater sensitivity to lipid peroxidation, contributing to the increased prevalence of T2DM and atherosclerosis. This review aims to cover the most recent scientific developments in dietary OS, the consequence of metabolic disorders, and their most significant clinical manifestations (T2DM and atherosclerosis). It will also emphasize the effects of dietary approaches in alleviating OS in MS.

15.
Front Nutr ; 9: 1047827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407508

RESUMO

Bisphenol A (BPA) is a synthetic chemical widely employed to synthesize epoxy resins, polymer materials, and polycarbonate plastics. BPA is abundant in the environment, i.e., in food containers, water bottles, thermal papers, toys, medical devices, etc., and is incorporated into soil/water through leaching. Being a potent endocrine disrupter, and has the potential to alter several body mechanisms. Studies confirmed its anti-androgen action and estrogen-like effects, which impart many negative health impacts, especially on the immune system, neuroendocrine process, and reproductive mechanism. Moreover, it can also induce mutagenesis and carcinogenesis, as per recent scientific research. This review focuses on BPA's presence and concentrations in different environments, food sources and the basic mechanisms of BPA-induced toxicity and health disruptions. It is a unique review of its type because it focuses on the association of cancer, hormonal disruption, immunosuppression, and infertility with BPA. These issues are widespread today, and BPA significantly contributes to their incidence because of its wide usage in daily life utensils and other accessories. The review also discusses researched-based measures to cope with the toxic chemical.

16.
Food Sci Nutr ; 10(10): 3230-3240, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36249984

RESUMO

The role of vitamin D in improving maternal health and reducing the risk of developmental disorders in fetus has been an important domain of research since the past few years. Vitamin D, owing to its immunomodulatory, anti-inflammatory, developmental roles, and regulating calcium homeostasis, is predicted to have a significant influence on maternal and fetal health status. Several observational studies and clinical trials, determining the impact of vitamin D on gestational diabetes, C-section, postpartum depression, pre-eclampsia, miscarriages, and preterm delivery, have been elaborated in this review. In addition, fetal birth defects including neurological development, reduced birth weight, respiratory infections, bone development, and altered anthropometrics have also been summarized with available evidences. Other important mechanisms related to the roles of vitamin D in the body are also explained. Furthermore, recent studies determining the effect of vitamin D at genetic level will also help in understanding and future design of research in the area of maternal and fetal health.

17.
Front Nutr ; 9: 944842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185679

RESUMO

Camel milk is known as the white gold of the desert because it contains within it a variety of nutrients which play a key role in the human diet. The health benefits of camel milk have been described for a variety of diseases such as diabetes, kidney disease, hepatitis, etc. including improved overall survival. A major health burden worldwide is liver diseases, and the ninth leading cause of death in Western countries is due to liver cirrhosis. Treatment is mostly ineffective for cirrhosis, fatty liver, and chronic hepatitis which are the most common diseases of the liver; furthermore current treatments carry the risk of side effects, and are often extremely expensive, particularly in the developing world. A systematic review of studies was performed to determine the association of consumption of camel milk on multiple diseases of the liver. The impact of camel milk on the laboratory tests related to the liver disorders, viral hepatitis, non-alcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC) were evaluated. The consumption of camel milk was accompanied by modulation of the values of serum gamma-glutamyl transferase, aspartate aminotransferase, and alanine aminotransferase in persons who are at risk of liver disease. In the patients with chronic liver disease, it was observed that they have low rates of mortality and low chances of progression to cirrhosis when they consume camel milk. Therefore, in patients with liver diseases, the addition of camel milk to their normal daily diet plan should be encouraged. In this review, camel milk's impact on the different kinds of liver diseases or any disorder associated with liver functioning was evaluated. Camel milk has a therapeutic as well as a preventive role in the maintenance and improving the metabolic regulations of the body.

18.
Front Nutr ; 9: 940514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938114

RESUMO

Cancer is a severe condition characterized by uncontrolled cell division and increasing reported mortality and diagnostic cases. In 2040, an estimated 28.4 million cancer cases are expected to happen globally. In 2020, an estimated 19.3 million new cancer cases (18.1 million excluding non-melanoma skin cancer) had been diagnosed worldwide, with around 10.0 million cancer deaths. Breast cancer cases have increased by 2.26 million, lung cancer by 2.21 million, stomach by 1.089 million, liver by 0.96 million, and colon cancer by 1.93 million. Cancer is becoming more prevalent in Pakistan, with 19 million new cancer cases recorded in 2020. Food adulteration, gutkha, paan, and nutritional deficiencies are major cancer risk factors that interplay with cancer pathogenesis in this country. Government policies and legislation, cancer treatment challenges, and prevention must be revised seriously. This review presents the current cancer epidemiology in Pakistan to better understand cancer basis. It summarizes current cancer risk factors, causes, and the strategies and policies of the country against cancer.

19.
Front Nutr ; 9: 901342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928834

RESUMO

Anthocyanins (ACNs) are plant polyphenols that have received increased attention recently mainly due to their potential health benefits and applications as functional food ingredients. This has also created an interest in the development and validation of several non-destructive techniques of ACN assessments in several food samples. Non-destructive and conventional techniques play an important role in the assessment of ACNs in agricultural and food products. Although conventional methods appear to be more accurate and specific in their analysis, they are also associated with higher costs, the destruction of samples, time-consuming, and require specialized laboratory equipment. In this review article, we present the latest findings relating to the use of several spectroscopic techniques (fluorescence, Raman, Nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, and near-infrared spectroscopy), hyperspectral imaging, chemometric-based machine learning, and artificial intelligence applications for assessing the ACN content in agricultural and food products. Furthermore, we also propose technical and future advancements of the established techniques with the need for further developments and technique amalgamations.

20.
Crit Rev Food Sci Nutr ; : 1-27, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930305

RESUMO

Fucoidans are promising sulfated polysaccharides isolated from marine sources that have piqued the interest of scientists in recent years due to their widespread use as a bioactive substance. Bioactive coatings and films, unsurprisingly, have seized these substances to create novel, culinary, therapeutic, and diagnostic bioactive nanomaterials. The applications of fucoidan and its composite nanomaterials have a wide variety of food as well as pharmacological properties, including anti-oxidative, anti-inflammatory, anti-cancer, anti-thrombic, anti-coagulant, immunoregulatory, and anti-viral properties. Blends of fucoidan with other biopolymers such as chitosan, alginate, curdlan, starch, etc., have shown promising coating and film-forming capabilities. A blending of biopolymers is a recommended approach to improve their anticipated properties. This review focuses on the fundamental knowledge and current development of fucoidan, fucoidan-based composite material for bioactive coatings and films, and their biological properties. In this article, fucoidan-based edible bioactive coatings and films expressed excellent mechanical strength that can prolong the shelf-life of food products and maintain their biodegradability. Additionally, these coatings and films showed numerous applications in the biomedical field and contribute to the economy. We hope this review can deliver the theoretical basis for the development of fucoidan-based bioactive material and films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...